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ON THE SOLUTION OF A FOKKER-PLANCK EQUATION
IN THE PRESENCE OF CORRELATED NOISE

INTRODUCTION

Tracking devices employing the phased-locking principle are widely used in modern communica-
tions, radar tracking, navigation, guidance, and control. Such devices include the phase-locked loops
(PLLs) [11, Costas loops [21, data-aided loops [3], hybrid loops [4], and symbol synchronizers [5],
which are essentially digital PLLs. The stochastic differential equations that describe the operations of
these loops [1-5] are well known, and Lindsey [6] shows that these equations have similar forms. Thus
a study of the PLL system can provide new information concerning this important device as well as
reveal operational characteristics of the other tracking loops [2-5].

In the design and analysis of PLLs two loop characteristics are of major concern: acquisition of a
signal's phase and the loss of lock. Both of these characteristics depend on the time-dependent or tran-
sition probability density function (p.d.f.) of loop phase error. Under certain suitable assumptions of
noise conditions the transition p.d.f. of a PLL is described by a Fokker-Planck equation, and much
attention has been directed to the solution of this equation. Previous transient analysis of PLLs have
been mainly concerned with first-order PLLs in the presence of white Gaussian noise (WGN). Dom-
iniak and Pickholtz [71 employed numerical techniques developed by von Neumann and Richtmyer [81
to study the Fokker-Planck equation in the presence of WGN. La Frieda and Lindsey [91 used eigen-
function expansions and numerically evaluated the eigenvalues for the transition p.d.f., with the phase
error reduced modulo 27r. OhIson and Rutherford [10] used numerical integration to evaluate the tran-
sient behavior, without the modulo-27r condition. Recently El-Masry [111 used a Fourier series with
time-varying coefficients to represent the p.d.f. with the phase error reduced modulo 2 -r.

These previous studies [7-11] provide essentially a complete understanding of the first-order PLL
in the presence of WGN. However, nothing has been known about the transient behavior of the first-
order PLLs in the presence of correlated noise. The assumption of correlated noise in PLL systems is
probably more realistic than the WGN assumption when the phase detector is preceded by bahdpass
filters.

In this report the first-order PLL in the presence of exponentially correlated noise will be studied.
First the Fokker-Planck equation will be presented together with the corresponding initial and boundary
conditions. Unfortunately this Fokker-Planck equation cannot be solved. However, for the case of a
zero signal-to-noise ratio an analytical solution can be found and will be presented. It will be shown
that the solution is a convergent series which satisfies the initial and boundary conditions and is
differentiable with respect to phase error 0 and time t. Because the solution obtained is the transition
p.d.f. of the modulo-27T phase-error process, other loop statistics such as the cumulative distribution
function and variance of phase error can be easily derived. Another advantage of the analytical-solution
approach of this report is that the effect of noise bandwidth on the transient phase-error process +(t)

can be shown explicitly.

Manuscript approved August 3, 1982.
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HO AND LANG

FOKKER-PLANCK EQUATION

Let +(t) be the phase error of a first-order PLL (Fig. 1). Assume a sinusoidal input and a corre-
lated noise process x(t). The phase error 1/(t) satisfies the nonlinear stochastic differential equations

d =(t) = 0-AK sin ¢a(t) -Kx 

dx~t , I (b < 7T, Ix XI oo 0 < t < 00,(1dt =-/3x W + K t n l
dit

where flo = X- o is the initial detuning, A is the received signal amplitude, K is the loop gain,
sin +(t) is the input nonlinearity, x(t) is the exponentially correlated process (also called colored
noise), 8 is a constant, and n(t) is assumed to be a WGN process with a zero mean and a two-sided
spectral density of N0/2 W/HIz. Because n t) is a WGN process, the solution to (1) has vector Markov
properties, and the transition p.d.f. satisfies the forward Fokker-Planck equation [12]:

ap = -- a [(f - AK sin 0 - Kx)p] + ,3 a (px) + No0 O2 a P
a t 0a~ba 4 ax 2

0 >< t < °°, I0 (bI< 7r, Ix XI< °,(2)

where p = p(1/, x, t I (O, x0 , t0 ) is the modulo-27r transition p.d.f. of 0 and x. The initial and bound-
ary conditions are governed by the physics of our problem. We assume that the PLL is in lock at initial
time t0. Thus the initial condition is

lim p(b, x, t I 00, x0, to) = 8(0 - 0) eW; (3)t-to ~~~~~~~~~~~~~-x/2_io- 12

where V(..) is the Dirac delta function. In (3), x(t 0 ) is assumed to be normal with a zero mean and
variance a-?2 and to be independent of x(t) to ensure that x(t) is stationary [13]. The boundary condi-
tions, which are determined from the modulo-27T assumptions, are

P (-T, x, t) = p( r, x, t) and ap (-v-, x, t) = a- OT, x, t) (4a)
ax ax

and

P''-,) (= p', °, "= a -o( , t) = ap oo, t) =0. (4b)
Ox Ox

In addition the transition p.d.f. satisfies the normalization condition

fJ 7 p(<, x, t I (o, xO, to) dxdo = 1, for all t. (5)

Xtt)

Fig. I - Model of a first-order phase-locked loop
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Let us consider (2) with zero initial detuning (flo = 0) with the substitutions

N____ AK K /D'= 4A, T =D't, e= , = and k2= D, (6) _.
4 D' DD

Equation (2) can now be written as

- =e pcos +sinx +]kx -±kk2+k2p+k2X - + 2 7
07- 1 ao xo Ox ox

Unfortunately neither analytic nor numerical solutions of (7) are available. For the case of a zero
signal-to-noise ratio (E = 0) and zero initial detuning (f0= 0) it will be shown that an analytical solu-
tion can be obtained for the reduced equation

__ ao 0 02
_a = ikjx- + k2 + k 2 X P- p Lp. (8)
OT aOa x 0x2

SOLUTION OF THE REDUCED EQUATION

Let us assume as a solution of (8) an expansion of the form

p 0, x,r)= A Amn(i) VmnG(/, x), (9)
mn

m=O, ±1, ±2,...
n=O, 1,1 ...

where the Am"(-) depend only on 7 and the Vmn,(, x) depend on 1 and x. Because L in (8) is
independent of T, one may use the method of separation of variables. With Xmn as the separation
parameter, the A,(,T) can be shown to be of the form

Am0
6- ) = 6',,C., e , (10)

where the Cmn are unknown coefficients and the Xmn are eigenvalues which satisfy

L TomnG/, X) =X,,xVm, (, , x) (11)

with boundary conditions

V,,,(-7T, X) = V,,,(7T, x) and aOVn (-7r, X) = V.' (T, X) (12a)

and

Vmn( , -00) = Vm"(I, 00) = a (mnV,, 00) = a"," (4t, 0) . (12b)
Ox Ox

To solve (11), we note that the variables 4 and x are also separable. We let a,, be the separation
parameter and write V,,,n(0, x) = F(,, (/)X,,, (x), which results in an equation in 4 given by

~~m 04) =am, (F~ITM-) (Dm6(T) (13)-) a m st0) )(r
Solving (13) and requiring that 4'm be normalized, we obtain

4(DFmG) = I e im, i = /-IT , m = 0, + 1 +2. (14)
277-

The remaining equation in x has the form

x2m + k2x d + (k2 - X, -7an ,kjx)X,, = 0, (I5a)
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where

X,, (-0) = X,(00) = dXmn (0) = dXmn (0) = 0. (15b)
dx dx

This equation is in the form of a standard second-order linear differential equation with regular boun-

dary conditions. Making the changes of variables

Wm,,(x) = Xm,,(x) exp[f F(4)d4J (16a)

F x)= 2X '(16b)
2

= a(x + y), (17a)

a = 2 (17b)

and

2imk (17c)

k2

will result [12] in an equation

d2 Wmn () +(A - m2) Wmn( ) = 0, (18)

where

lim Wn,q(.) = HliTm = 0)

and where

Xn = 2k f2k2 -U4A - km | (19b)

Equation (18) is a standard form. Its solution can be written as

( Q) = N, e-(,2 H( ), (20)

where H,(tm) is the liermite polynomial of nth order with the argument

2/ i + 2ikimJ (21)

Because (20) is a bounded solution of (18), the requirement on X,, can be found to be X,,= 2n + 1,
n = 0,1,2, .... Thus (19b) can be simplified to yield

= i 2 -nk2. (22)
Expressing the solution of (20) in terms of X,, (x) by noting the changes of variables of (16) and (17),
we obtain

-k x2/4 -4 2/2
X,,, () = N,, e 2 e P" H,, (). (23)

We now require the-functions X,,,n(x) to be orthonormal. Then the scalar product (X,,,,,, N,4) is

(XNn, Xkl) = £ X,...(x)XA(x) w(X) dx = Am)1I, (24)

4
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where w(x) = e k2x /
2 is a weighting function, Xkl denotes the complex conjugate of Xkl, and

8mk and 8,a are Kronecker delta functions (8p, = I if p = q, and 8pq = 0 if p • q). By use of an iden-
tity for the weighted orthogonality of the Hermite polynomials [141

00 e-2 H W Hn, W dx 0, if m = (25)

I e- x H"(x)Hm(x) { 2"n!iTi, if m = n,

the coefficient N, in (23) can be determined as

N, = (26)

To compute the unknown coefficients Cmn from (10), we write the solution as

p(¢, X, T) = Y ,, C e mn(¢, x) (27)
m n

Thus, by setting T = 0 in (27) and using the orthonormal properties of Vmn(0, x), we can determine
Cmn from

C"n f X ( p(4 , x,) 0)mn(4, x)w(x) dxda

Nn | 2ikim | (klm/2k3) 2 (28)
air~~~~~ In 2 2 28

Substituting Cmn into (27) and integrating over.x from -0 to 00, we get

p(4), t = 2 +D + - Cos mO e (29)

This is the desired analytical solution. It is the transition p.d.f. of the first-order PLL in the presence of
exponentially correlated noise with zero signal input and zero initial detuning. This solution is a con-
vergent series and clearly satisfies the modulo-27T boundary conditions (4). To see that it satisfies the
initial condition of the PLL in lock, let to = 0, )(t0 ) = 0. Then, without loss of generality,

lim p(0, t) = I - A cos MO= 8(4). (30)
m=1

We would expect the solution of (29) to approach the solution for the case of WGN input as
,3- 0, because x(t), the exponentially correlated process given in (1), will approach a WGN process
when /3- 00 To show this, we see that x(t) is a normal process with zero mean and variance a-? (and
thus is a result from a linear operation on a WGN process with zero mean and variance 0-2) The auto-
correlation function of x(t) can be shown [13] to be

RX(t - Nto) = 2 0 e A ol (31)
2 2

From the theory of delta functions, R (t - to) can be shown to be a delta function in the limit as
-3 - 00 by treating it as a symbolic function [15]. However, for practical purposes Rx(t - to) is a delta

function in the limit if we can show

lim - e Alt tol (32)
O-0 2

It-tol-.°
and

lim r e'191' dT = 1, = t - to. (33)

5
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Because RXX(t - t0 ) satisfies (32) and (33), we conclude

lim RX.-(t -t) = N8(t-t). (34)
13-- 2

Since x(t) is a Gaussian process, its statistics are completely specified by its mean and autocorrelation
function. Returning to (29) and taking the limit as/ - 00, we can show

limn P(O, t) = + - co iOS Dnh2I, (35)

which is the solution for the first-order PLL in the presence of WGN when the input signal and the ini-
tial detuning are zero. This result is consistent with those obtained previously by La Frieda and
Lindsey [9].

An important advantage of our analytic approach to solutions of the Fokker-Planck equation is
that the analytical result of (29) gives the explicit relationship between /3 (the noise bandwidth) and
4)(t) (the time-dependent phase error process). To see the precise meaning of,/, consider x(t) as the
output of an RC filter whose input is a WGN process with zero mean and two-sided spectral density
N0/2 W/Hlz. Thus the filter input spectral density is S,,(f) = N0/2 W/HIz. The spectral density of the
RC filter output will be

No

SX(.f) =2 (36)

where .f0 = 1/2ir RC is the frequency at which the response of the RC filter is 3 dB below its peak.
The autocorrelation function of x(t) can be determined from

,~6- =fiTo~ oi
RxX (r) =J e- iWT SX (W) dotw 

= o w0o e I (37)

where r = t - to and oo = I/RC. Relating (37) to (31), we see that /3 = wu. Thus /3 can be con-
sidered as the -3-dB radian-frequency bandwidth of an RC low-pass filter.

The transition cumulative distribution function is obtained easily from p(4), t), where

prob p||<eb)=J g p(<, t) dO

41 + 2 0 sin mO/ e (38)

The time-dependent variance of the phase error is often of interest. This can be obtained simply from

var [ ] ( ft ) Jo 0p (2 t( ) d4

7=.2 + co s mrr v{+e | J
2~ e(9

3 m=i m2

6
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NUMERICAL RESULTS

Equation (29) was used to compute values for the transition p.d.f.s of the first-order PLL in the
presence of exponentially correlated noise, this equation being for the case of zero signal input (E = 0)
and zero initial detuning (fQ = 0). Figure 2 shows the transition p.d.f. for /3 = 00, which reduces to
the solution of the first-order PLL in the presence of WGN, and these results agree with those obtained
by La Frieda and Lindsey [9]. Figure 3 is a plot of the transition p.d.f. when /3 = 100. In both Fig. 2
and Fig. 3 the dispersion of the p.d.f. increases with increased Dt (D being called the diffusion con-
stant). At Dt = 2.5 the p.d.f.s have almost reached the steady-state distribution value, which is a uni-
form distribution between -7T and 7T. Figure 4 shows loop's phase decay at a fixed time (Dt = 0.125)
for different values of correlated noise bandwidth /3. As expected, phase-error dispersion grows with
increased ,3.

The transition cumulative distribution function was also computed, for / = 100 (Fig. 5). For
small values of Dt, the distribution of +(t) concentrates about 4 = 0, and it is conjectured that the
modulo-27r phase-error statistics are a good approximation to the loop loss-of-lock statistics, because for
Dt sufficiently small the phase error 0) ) has not had a chance to skip cycles and thus no buildup of
phase-error probabilities has occurred at 4) = ±2k7r, k = 1, 2, 3, ....

The time-dependent variance of the phase error was computed (Fig. 6). Figure 6 shows that a
higher phase-error variance is associated with a larger noise bandwidth /3, as expected.

SUMMARY AND DISCUSSION

We have shown a method for obtaining an analytical solution to the Fokker-Planck equation
corresponding to the first-order phase-locked loop (PLL) in the presence of exponentially correlated
noise for the case of zero signal-to-noise ratio, zero initial detuning, and phase error process reduced
modulo 27r. The solution is the transition probability density function (p.d.f.) of phase error and is
represented by a convergent series showing the explicit dependence on the noise bandwidth /3 and the
diffusion constant D.

Computed values of transition p.d.f.s, transition cumulative distribution functions, and the time-
dependent variance of the phase error are shown in Figs. 2 through 6. These computed values indicate
the following:

* For Di > 2.5 the transition p.d.f. essentially reaches the steady-state value, which is a uniform
distribution between -7r and 7r.

* At Dt = 0.25, with /3 > 100, the transition p.d.f. for the exponentially correlated noise can be
approximated by the p.d.f. for the Gaussian noise case (represented by /3 > 105). We now have a
means for assessing the validity of using the Gaussian noise approximation for the RC band-limited
noise in the PLL system.
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__ . ,,-, - 0 " 2' + ,RADIANS 2,RADIANS 2
Fig. 2 - Transition probability density functions for the first- Fig. 3 - Transition p.d.f.s for the first-order PLL in the pres-
order PLL in the presence of exponentially correlated noise ence of exponentially correlated noise with E = 0, P3 = 100,
with E = 0, / = Do, and 10 = 0 and 00 = 0

Fig. 4 - Transition p.d.f.s for the first-order PLL in the pres-
ence of exponentially correlated noise for various values of,6
with E = 0, Dt = 0.25, and Ql = 0

, .RADIANS

Fig. 5 - Transition cumulative distribution func-
tions for the first-order PLL in the presence of ex-
ponentially correlated noise with E = 0, , = 100,
and 0 = 0

Fig. 6 - Time-dependent variance of phase error for the
first-order PLL in the presence of exponentially corre-
lated noise with E = 0 and 0= 0

81.5'-5

Dt
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